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(a) Wooden beams have
the float-ability affor-
dance.

(b) Flat roads have
the traverse-ability af-
fordance.

(c) Flat wooden roads
offer both float-ability
and traverse-ability.

Fig. 1: The features that describe (a) wooden beams and (b) flat
roads can be combined, to obtain an object design that possesses both
float-ability and traverse-ability: (c) a pontoon bridge.

Abstract—Few Computer-Aided Design tools exist for explor-
ing the design solution space. We introduce an algorithm for
generating object forms with desired affordances. We follow the
principle form follows function, and assume that object forms
are related to affordances they provide (their functions). First,
we use an artificial neural network to learn a function-to-form
mapping from a dataset of affordance-labeled objects. Then, we
combine forms providing desired affordances, generating object
forms expected to provide all of them. We verify in simulation
whether generated objects indeed possess the desired affordances
by executing affordance tests. Examples are provided using the
affordances contain-ability, sit-ability, and support-ability.

I. MOTIVATION

Traditionally, research in autonomous robots deals with
the problem of recognising affordances of objects in the
environment: i.e. given an object, what affordances does it
offer? This paper addresses the inverse problem: given some
affordances, what object form would provide them? (DARPA,
2017) This paper presents a method for automatic generation
of object forms with desired affordances, which automatically
relates object forms to their affordances, and then applies
this knowledge to conceive new object forms that satisfy
given functional requirements. Fig. 1 illustrates the concept of
combining features describing two different objects to create
another object possessing the affordances of both initial objects.

II. RELATED LITERATURE

A standard practice in design is to consult knowledge
ontologies (Bryant et al., 2005) that contain function-to-form
mappings (Umeda et al., 1997). Hu et al. (2018) presented a
related review on object functionality inference from shape
information. Autodesk, Inc. (2017) employed generative design

to explore the space of 3D object shapes using genetic
algorithms (Bentley, 1996).

To generate 3D forms from descriptions, modern techniques
employ Auto-Encoders (Girdhar et al., 2016) and Generative
Adversarial Networks (J. Wu et al., 2016), which learn a
mapping from a low-dimensional probabilistic latent space
to the space of 3D objects. Tian et al. (2019) proposed shape
programs to represent 3D object models composed of multiple
parts. In this study, we used a Variational AutoEncoder (VAE)
(Kingma et al., 2014; Rezende et al., 2014) to both extract
features describing 3D objects, and reconstruct the 3D shape
of an object when given such a description.

A field of research that also focuses on linking object shapes
with their affordances is that of affordance learning. It is based
on the notion of affordance that defines an action that an object
provides (or affords) to an agent (Gibson, 1977). In the context
of this paper, we are interested in approaches that map object
features to corresponding object affordances. Zech et al. (2017).
published a review on affordances in cognitive robotics.

III. METHODOLOGY

The main idea is to train a VAE to reconstruct voxelgrid
object models, and then generate novel shapes by combining
latent codes from existing examples with desired affordances.
The working hypotheses are: (i) objects providing the same
affordance have common form features, (ii) averaging over
multiple forms that provide the same affordance will extract
a functional form providing that affordance, (iii) parametric
interpolation between samples can generate novel forms with
combined affordances of those samples. This last assumption
is contentious, as we cannot yet predict the behaviour of
affordances when combining their underlying shapes. Thus,
we verify the presence of these affordances in simulation.

For simplicity, we employed a voxelgrid representation
for 3D object models. The neural network is a Variational
AutoEncoder with 3D Convolutional layers and a bottleneck
latent layer, taking as input voxelgrid models of dimension
64x64x64, trained on ModelNet40 object dataset (Z. Wu et al.,
2015) using a weighted reconstruction loss, penalising the
network more strongly for errors in reconstructing full voxels.

Our workflow is composed of two phases: (1) learning phase,
in which a neural network is trained to generate feature-based
representations of objects and to faithfully reconstruct objects
using this representation, and (2) request phase, in which a user



Fig. 2: Sample chairs/tables (top), their reconstructions (bottom), and
the extracted functional forms (right). Visualiser: viewvox (Min, 2004).

requests the generation of a novel object with some desired
affordances among those present in a menu. The algorithm then
picks object categories providing those affordances, extracts
corresponding shape features, and combines them to generate
a feature description of a new object, which is then converted
into a 3D voxelgrid model.

Every category of objects possesses a set of affordances
that defines it. From a form follows function perspective, all
object samples contained in a category share a set of features
that provide its set of affordances. We call this set of features
the functional form of a category of objects, computed as the
average latent vector of an object category. We visualise it by
inputting the obtained latent-vector description into the decoder
trained to reconstruct 3D volumes (Fig. 2).

To combine two object descriptions, we compute how
important is each variable in the description vector for en-
coding the object shape, by comparing it to corresponding
variable describing a void volume and a non-informative prior
distribution. We then combine these variables using a conflict
resolution rule, giving priority to more important variables or
averaging between them.

IV. RESULTS AND DISCUSSION

In this section we provide results on the (a) capacity of
the VAE to describe and reconstruct objects (Fig. 2), (b)
extraction of functional forms for different object categories,
(c) generation of novel objects through the combination of
feature representations of object categories containing desired
affordances, and (d) affordance testing for the generated objects.
Fig. 2 shows the extraction of functional forms, relating
features like flatness to support-ability, and seats with sit-ability.
Fig. 3 shows the combination of sit-ability and contain-ability
extracted from toilets and bathtubs, interpretable as bidets.
Fig. 4 shows the combination of support-ability and contain-
ability affordances. The comparison of generated objects with
most similar samples from the dataset suggests that generated
objects differ from training set samples (Fig. 4d). Tests executed
in simulation verify that generated objects indeed provide the
requested affordances (Fig. 5).

V. CONCLUSION

We presented a method for generating objects with desired
affordances, by extracting a form-to-function mapping from a
dataset of objects, combining these forms in a latent feature
space learned by a neural network, and generating 3D object

Fig. 3: Combination of functional forms with sit-ability and contain-
ability, extracted from toilets and bathtubs, resembling a bidet.

(a) Flat functional
form providing
support-ability.

(b) Concave form
providing

contain-ability.

(c) Form providing
contain-ability and

support-ability.

(d) Closest
objects from
training set.

Fig. 4: Combining features of objects providing respectively contain-
ability and support-ability. (d) Closest objects from the training dataset.

models from them. We then test the presence of desired
affordances in a physics simulator. Our models still lack
information about materials from which objects are composed,
and the articulations between subparts.
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(a)
Generated

object.

(b) Supportability test. (c)
Containability

test.

(d) Contain-
ability of a
humanoid.

Fig. 5: Affordance tests for support-ability and contain-ability.
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