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Abstract— This paper presents a new multi-purpose dataset
obtained from virtual reality environments. The main goal of
this dataset is to validate the scalability property of different
learning methods, particularly semantic-based approaches for
robotic applications. This dataset contains demonstrations from
random participants performing three tasks, such as: washing
dishes, setting a table, and cleaning a room. For each of the
tasks different virtual scenarios were created, in this case one
kitchen, one dining room, and one living room, respectively. The
presented dataset contains information from 240 participants
which capture different variations of the analyzed tasks. Thus,
demonstrating its potential use for assessing the scalability and
generalization properties of state-of-the-art learning approaches
due to the high variance of the demonstrated tasks.

I. INTRODUCTION

Recently, new emerging technologies such as virtual real-

ity and wearable devices allow for capturing large amounts

of natural human movements of users with ease. It is envi-

sioned that the next generation of learning methods can take

advantage of this and bootstrap the learning of new activities

with these enhanced sensors by exploring large and diverse

scenarios. The virtual reality systems, for example, open up

the possibility to rapidly create new scenarios, as well as

the fast analysis of objects and human movements without

dealing with typical problems from perception methods such

as occlusions when using camera recordings. Normally, one

or several cameras are used to record human movements

in household domains, in this case, the positions of the

camera(s) will be fixed. Therefore, the perceived environment

is limited to the positions of the camera(s). This limitation

is more evident when the camera loses track of the observed

object due to occlusions, e.g. one object is on top/in front of

another, the participant executes the action in the opposite

direction of the camera, etc. In this case, the data obtained

from virtual scenarios gives enhanced information about the

environment, for instance, 3D positions, 3D orientations, and

velocities of every single object in the VR. For example,

the VR systems can provide information about the objects

located inside a drawer, even when these objects are oc-

cluded. However, obtaining the information of every single

object in the scene brings new challenging problems, such

as identifying the objects of interest. In general, if a learning

algorithm is recognizing human activities, then objects such

as walls, ceiling, and floor are not relevant for the recognition
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Fig. 1. Three different virtual scenarios: dining room, kitchen, and living
room.

methods. Therefore, the learning method needs to filter out

unnecessary data before it can create the desired models. To

this aim, semantic-based methods have shown that they are

able to deal with such problems in a reliable manner [1], [2],

[3].

Semantic-based methods aim to find meaningful relation-

ships between human motions and object properties in order

to understand human activities. For instance, semantic-based

approaches extract the meaning of the observed raw signals

(trajectories) in order to create informative models that

permit finding the intention or the purpose of the observed

motions [4], [5]. For example, when a robot observes a

human performing the activity of washing a dish, instead of

learning activity models from specific low-level parameters

such as velocity or positions, the robot extracts the meaning

of washing using abstract representations [6]. This allows the

learned semantic description of the activity of washing to be

used in a different scenario since the obtained model allows

for this type of generalization.

One of the main advantages of generating semantic-based

models for either activity recognition or action execution is to

create formal descriptions to extract the syntax and semantics

of human activities. However, one of the main challenges to

assess the obtained semantic models is to find multi-purpose

datasets. The main contribution of this extended abstract is

to present a new dataset, named Household Activities from

Virtual Environments (HAVE). The HAVE dataset contains

three different household scenarios: dining room, kitchen and

living room, which are used to evaluate different tasks, e.g.

setting a table, washing dishes, and cleaning a room. Fig. 1

presents some examples of the virtual scenarios presented in

this dataset.

II. RELATED WORK

One key element to advance the research on the under-

standing of human movements in robotics is the used of

benchmarking datasets. Huang et al [7] presented a very

comprehensive analysis of the different datasets related to

the topics of object manipulation and grasping. There have



been many attempts to propose a common benchmarking

dataset for the recognition of human activities, however,

the main problem lies in the availability of the datasets

since there are only few that are publicly available for

testing semantic-based methods for robotic applications. For

example, De la Torre. et al [8] presented the Carnegie Mellon

University cooking dataset (CMU-MMAC1), which contains

multimodal information of 5 external cameras, 1 wearable

camera, 5 microphones, a Vicon motion capture system with

12 infrared cameras, Internal Measurement Units (IMUs),

and wearable devices (eWatch). This dataset captures the

movements of 43 subjects performing five different cooking

tasks such as preparing brownies, pizzas, sandwiches, salads,

and scrambled eggs. This is a very complex dataset which

allows various analysis of the subject’s movements captured

by multiple sensors. Another dataset that includes multiple

cameras is the TUM cooking dataset2 [9], which contains

three RGB cameras located in different positions and one

wearable gaze camera with attached markers mounted on the

head of the subjects. With the TUM dataset, it is possible

to analyze the performed task from different angles and

different perspectives. This dataset recorded 9 subjects for

two different cooking tasks such as making a pancake and

preparing a sandwich. The interesting component of this

dataset is the first person view perspective, which is the view

that robots have when executing the desired task. With this

dataset, it is possible to analyze the focus of attention of the

participants and transfer this to robots. There have been some

efforts to also capture the movements of the human body, for

example, the KIT Whole-Body Human Motion3 Database

[10]. The KIT dataset uses a motion capture system which

is very useful for human motion analysis, imitation learn-

ing, action recognition, and motion generation in robotics.

This large-scale dataset contains whole-body human motions

from 38 subjects performing a wide variety of manipulation

tasks such as drinking, shaking, pouring, throwing objects,

preparing dough, dancing, etc. This is one of the largest

datasets available in robotics which, besides the manipu-

lative actions, also contains locomotion and gestures. The

Cornell Activity Dataset4 [11] contains recordings from two

datasets, the CAD-60, and the CAD-120. Both have RGB-

D video sequences of 8 humans performing different tasks

in different environments such as office, kitchen, bedroom,

and living room. The human movements were recorded

using a Microsoft Kinect sensor for the following tasks:

making cereal, brushing teeth, taking medicine, stacking

objects, microwaving food, etc. The Cornell dataset also

provides information about the tracked human skeletons

and the annotations for tasks, activities, and affordances.

Another dataset that also includes semantic annotations of

the manipulation activities is the MANIAC dataset5 [12].

The MANIAC dataset recorded 8 different manipulation

1http://kitchen.cs.cmu.edu/
2http://web.ics.ei.tum.de/∼karinne/Dataset/dataSet.html
3https://motion-database.humanoids.kit.edu/
4http://pr.cs.cornell.edu/humanactivities/
5https://alexandria.physik3.uni-goettingen.de/cns-group/datasets/maniac/

activities such as pushing, stirring, cutting, chopping, etc.

All manipulations were recorded using the Microsoft Kinect

sensor to observe 5 different subjects performing 8 different

tasks and each task was performed 15 times.

III. HOUSEHOLD ACTIVITIES FROM VIRTUAL

ENVIRONMENTS (HAVE) DATASET

Virtual Reality (VR) is a viable way to collect realistic

information about human activities in a structured manner.

Fig. 1 shows the three different virtual scenarios that were

developed for the acquisition of human demonstrations.

The virtual reality system runs under Windows and was

built with the Unity Game Engine. Users can interact with

the environment through the Vive HMD (Head Mounted

Display) and its respective controllers. The movements of

the users in the VR environment are stored in a log file

which contains information about the 3D position, orienta-

tion (quaternion), and velocities of the end-effectors (hands

of the human while using the controllers), as well as the

3D positions and the names of all the objects in the virtual

scene. The proposed VR system is compatible with the

Robot Operating System (ROS) which runs under Linux.

The output of the VR demonstrations communicates with

ROS via a WebSocket connection through the ROSBridge

Server6. Therefore, the VR system sends information about

the world’s physical state such as hand movements and

object information to the ROS engine for further semantic

segmentation and interpretation of the human demonstrations

(see Sec. IV).

The HAVE dataset contains human demonstrations of

everyday tasks such as setting a table, washing dishes, and

cleaning a room. This data was collected from random

participants attending the Automatica7 trade fair that took

place in Munich in June 2018. Automatica is the leading

exhibition for smart automation and robotics in Germany.

The dataset contains performances from different types of

participants ranging from teenagers (> 16 years old) to adults

(< 70 years old).

One of the main goals of the collection of this new dataset

was to obtain as many variations as possible for executions

of the same task. In total, we captured 240 recordings for

the three scenarios. As expected, not all the collected data is

usable for the extraction of semantic representations. Fig. 2

shows some examples of four different participants. First, we

see that the participant does the requested task of washing

the dishes (Fig. 2a). However, the second participant (Fig.

2b) decided not to perform the requested task and instead

placed the plate inside the microwave for a cooking task. The

third participant has successfully set the table from the dining

room (Fig. 2c). We can observe that the fourth participant

is not performing the requested task, but he/she is throwing

the dishes through the window (Fig. 2d). This means that

not all the recorded data is usable. In consequence, we

have manually labeled good and bad performances. Table I

6https://github.com/RobotWebTools/rosbridge suite
7https://automatica-munich.com



Fig. 2. Examples of the type of data obtained from the different participants. Sometimes, the participants did not perform the requested task. In such
cases, the data is considered a bad example and not further analyzed.

summarizes the types of performances that we have obtained

from the HAVE dataset. Overall, more than 85% of the

collected data can be used for further analysis.

TABLE I

SUMMARY OF USABLE DATA FROM THE HAVE DATASET

Analyzed task Good Bad Total

Wash the dishes 82 14 96

Set a table 79 4 83

Clean a room 44 17 61

Total number of recordings 240

IV. ASSESSING THE HAVE DATASET TO EXTRACT

SEMANTIC REPRESENTATIONS

A human can set a table regardless of its size, the

kind of dinnerware, and the shape of the glasses. We,

humans, manage to do that since we can adapt to different

environments [13]. Therefore, the goal of using the data

collected from the HAVE dataset is to transfer the human

demonstrations to service robots so that they can learn from

possible variations within an environment. The collected

dataset gives the possibility of analyzing different styles of

performing the same task. For example, from the 79 good

performances of setting a table, we observe different results.

For instance, some people decided to set the table for one

person, and others for two persons. Furthermore, the table

was set-up in various configurations since some participants

decided to use only plates and glasses to finish the task as

soon as possible, whereas other participants executed the task

in more detail using most of the available objects in the

scene. Also, the spatio-temporal relationships between the

objects vary. For example, some participants placed the knife

to the right side of the plates and other participants to the

left side. Therefore, the dataset captures different variations

as expected, making this a unique component of the HAVE

dataset.

In order to evaluate the proposed dataset, we have analyzed

the data of some participants during the task of washing

dishes (see Fig. 3). In our previous work [2], we presented a

hierarchical learning method to continuously segment the hu-

man motions and simultaneously classifying known actions

while learning new ones on demand. Our proposed learning

method is a semantic-based approach that extracts the mean-

ing of the demonstrations by means of symbolic and semantic

representations. The lowest level of our hierarchical method

finds the relevant information from the demonstrations from

multiple sensors [9]. We have previously demonstrated that

the relevant information is based on the velocity of the

user’s hand and the relative distance between the objects in

the scene and the user’s hand. Fig. 3b) shows that for the

VR demonstrations, the system deals with multiple objects.

In this case, the segmentation method discards objects that

are far away from the user’s hand, and only considers the

objects that are closer to the hands for recognition of the

demonstrated activities. This obtained information represents

the input to the highest level, which infers the demonstrated

activities using the automatically extracted semantic repre-

sentations. The semantic representations are obtained using a

decision tree based on the C4.5 algorithm [14]. The obtained

rules are enhanced with a knowledge representation module.

In this case, we use KnowRob [15] as a baseline ontology.

Then, the proposed semantic-based method is able to track,

segment, and recognize the movements from the user on-

line [6], [2]. One important capability of this semantic-based

approach is the possibility of learning new activities on-

demand. Fig. 3d) shows that there are at least nine new

activities that were detected during the washing dishes task.

One of the limitations of this method is that it is not able to

give a proper label to the newly recognized activity. In this

case, all the newly detected activities are labeled as Gran-

ularActivity XXXXX, where XXXXX indicates a randomly

generated unique ID. As future work, we will investigate



Fig. 3. Pipeline to extract semantic representations for one subject performing the washing dishes task. a) shows the end of the washing dishes demonstration
in VR, b) exemplifies the challenge of having the information from all the objects in the scene for performing the automatic segmentation, c) shows that
the extraction of the meaning of the activities uses semantic rules and a knowledge-base module, and finally, d) shows the generated task graph obtained
at the end of the demonstration.

if the newly generated activities are correct before labeling

them correctly.

The main goals of semantic-based approaches are to

enable standard robots to be flexible, modular, and adaptive

to different environments. In order to test all these different

capabilities, rich datasets are needed. For example, to test

the flexibility of the state-of-the-art learning approaches, it

is needed to analyze the robustness of the presented method

to different variations. As previously mentioned, different

people perform the same task in several ways, these different

demonstrations styles are captured in the HAVE dataset.

Therefore, the flexibility and adaptability of the learning

method can be assessed. To demonstrate this, we have tested

our previously proposed semantic-based method [6] with one

random participant from the HAVE dataset for the task of

washing dishes. This means that the learning system has

never seen this demonstration (this demonstration is not part

of the training sample). The semantic-based method success-

fully identifies known activities while learning newly demon-

strated ones. Furthermore, the learning method constructs a

graph, which we called a task graph (see Fig. 3d)), of all

observed activities and their relationships through continuous

observations. This is later used for the robot planning process

[6]. The robot understands and recognizes the activities

during the demonstration in the virtual environment system

and utilizes this information to execute the learned task. Thus

demonstrating the major potential that the presented HAVE

dataset has for testing state-of-the-art leaning methods.

V. CONCLUSIONS

One of the challenging problems in robotics is to teach

robots new activities and learning methods need to cope with

a new and large variety of situations. These methods should

adapt to different scenarios to allow the transference of the

learned models across different situations. In order to achieve

that, novel and rich datasets are needed to validate the

robustness and flexibility of the proposed learning methods.

In this paper, we proposed a multi-purpose dataset that

collected demonstrations from random participants in virtual

scenarios. This dataset contains 240 recordings obtained

from three different household scenarios, such as: setting

a table, washing dishes, and cleaning a room. From this

dataset, it is possible to extract the meaning of the demon-

strations, which allows for identifying new activities, thus

demonstrating the potential of the proposed dataset to assess

the scalability and domain transfer of learning approaches.
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