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Abstract— A Gibsonian theory of affordances commits to
direct perception and the mutuality of the agent-environment
system. We argue that there already exists a research pro-
gram in robotics which incorporates Gibsonian affordances.
Controllers under this research program use information per-
ceived directly from the environment with little or no further
processing, and implicitly respect the indivisibility of the agent-
environment system. Research investigating the relationships
between environmental and robot properties can be used to
design reactive controllers that provably allow robots to take
advantage of these affordances. We lay out key features of
our empirical, generative Gibsonian approach and both show
how it illuminates existing practice and suggest that it could be
adopted to facilitate the systematic development of autonomous
robots. We limit the scope of projects discussed here to legged
robot systems but expect that applications can be found in other
fields of robotics research.

I. INTRODUCTION

A. Background

An affordance is an opportunity for action [1]. Roboticists
build autonomous systems that accomplish tasks by taking
appropriately coordinated actions in an environment. We
can conceive of a project in autonomous robotics, then, as
that of designing a robot that can appropriately exploit the
available opportunities for action relevant to accomplishing
the specified overall task or tasks. Conceiving the design
problem this way, we have two dimensions of control: the
objects to be acted upon [2], or the agents acting upon them.

In structured settings such as factories, the complexity of
the design problem has promoted approaches that treat these
dimensions independently. Both affordances and agents are
modularized in the interest of reconfigurability, scalability,
and customizability [3]. Object design and machine capa-
bilities are matched up through adherence to standardized
interfaces, mitigating the complexity of design by direct
specification of agent-environment integration. Agents bene-
fit from such a prescriptive design by explicitly representing
the environmental affordances and executing explicit plans to
recognize and respond to them. Of course, even in the most
structured settings, the illusion of complete control at design
time is succeeded by intricate statistics-driven interventions
at execution time pitting productivity against quality [4].

In contrast, consider a collaborative team of humans and
robots performing fieldwork in a desert [5]. The environment
is highly unpredictable, and even the robot may not behave
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predictably: end effectors break, and sensors can be dam-
aged in the field. Clearly, in general, attempting to produce
desired behaviors by precisely controlling and modeling the
environment, then using an intricate recreation of a task in an
agent’s associated internal representation in order to execute
it, is empirically unworkable. It is computationally costly,
inherently specialized, and inevitably brittle.

Equally unworkable is the opposite extreme of design:
A dogmatic commitment to reject internal representation
altogether [6], using only layers of reactive architectures
to attempt to confer robustness [7]. This approach may
be sufficient for certain tasks in specific settings, but is
unnecessarily limiting, and does not confer robustness even
in those cases if the layers are not well composed. Thus,
there is need for more considered approaches which promote
formal reasoning about how agent architectures can recruit
preexisting affordances to generate desired behaviors.

B. Affordance-based design of robot behavior

We propose an empirically driven rather than dogmatically
Gibsonian approach to design that uses structured compo-
sitions of sensory-driven controllers arranged to produce
a coupled agent-environment system that achieves desired
tasks. This research program is built on the two most vitally
Gibsonian notions of affordance [8]: that perception is di-
rect, with the consequence that we minimize representations
where the task does not explicitly involve representation
generation; and that the agent and environment comprise
one indivisible system that admits analysis. In this paper we
review specific design episodes from a longstanding program
of research in legged robotics that implicitly investigates
affordances in the more formal but empirically grounded way
we endorse.

This approach has two benefits which are not immediately
obvious. First, it facilitates exploration of empirical possi-
bilities that are Gibsonian in spirit: What representations are
needed to produce the desired behavior? And second, if effort
need not be spent to create representations that are useful for
the robot to perform its basic behaviors, then the effort can
be spent to create useful representations for communication
between collaborating robots and humans. For example, a
map of the ground stiffness in different locations in the desert
would be a very useful representation for a team of robots
tasked with helping geomorphologists studying erosion [5].
It is still useful even if the robots are able to navigate
and locomote with reactive control that allows each robot
to continue functioning normally even when it loses signal



connection to team members, damages an end effector, or
experiences a sensor glitch.

This research seems not to have been noticed by – much
less integrated into – the broader Gibsonian robotics research
program, which we anticipate is due to two causes. First,
its authors have not emphasized perceptual processing or
the concept of affordances, unlike other robotics researchers
investigating affordances [9]. Second, its authors have instead
emphasized mathematical proofs about the necessity or suf-
ficiency for task achievement of some architectural feature
relative to some hypothesized type of environment. These
proofs give the designer (and potentially agent) diagnostic
tools to assess whether a task is achievable, and if a failure
occurs, why.

We aim to show that the Gibsonian features of this ap-
proach have demonstrated empirical payoffs for autonomous
robots. In particular, we suggest that by explicitly articulating
these features in line with the generative methodology of [10]
we can facilitate the systematic development of robots that
act still more autonomously in real-world environments –
and explainably so, or refutably not. Carefully considered
compositions of controllers that have known mathematical
properties can then be used to build complex behaviors from
explainable components.

II. DESCRIPTION OF FRAMEWORK

A. Generative methodology aids description at different lev-
els of abstraction

Gibson described direct perception in two different, im-
portant respects. First, perception-as-sensation – that is,
perception of information that is immediately accessible in
the environment – may be sufficient to achieve the desired
task. Perception may thus be “direct” in the sense of not
needing further processing to perform its function. Second,
perception-as-activity – that is, perception as something the
whole agent does in its environment – can be understood as
a dynamic relationship between the agent and environmental
entities that together afford actions. It is thus “direct” in the
sense that the perception can itself be understood and studied
as a behavioral interaction. The extent to which internal
modeling is necessary for perception-as-activity is an open
empirical question [11] that we do not address here. Viewing
perception-as-activity as one of many kinds of interactive
behaviors belonging to an agent-environment system, we can
formally reason about the coordination of subsystems using
perception-as-sensation to produce complex behavior.

We adapt the generative methodology developed in [10]
to describe an artificial system at multiple levels, respecting
and relating these two senses of direct perception (see Figure
1). At the level of perception-as-sensation, we are concerned
with what information is detected by a robot’s sensors or
what forces are produced by its actuators. The perception of
a reactive planner [12] is “direct” in this sense. Description
of an embodied artificial intelligence at this level provides a
partial basis model of the physical robot and its environment.
The basis model consists of mathematical descriptions of

forces (or abstractions of forces) which govern the behavior
of the system.

At the level of perception-as-activity, we characterize the
more abstract “higher-level” behavior that we are interested
in artificially implementing. Description at the second level
provides an agent or emergent model of the desired behavior
abstracted away from the implementation. Behavior at this
level is still integrated with the environment, but may be
at larger temporal and spatial scales than basis-level compo-
nents. Active perception [13] is “direct” in this second sense.

A “generative model” describes how features of the basis
model affect features of the agent model – that is, how the
components of the designed architecture and the relevant
properties of the environment into which it is coupled af-
fect the emergent behavior. Researchers programming robot
behaviors create generative instances by organizing features
of their robots and recruiting features of their enviroments.
Formal analysis of these generative instances constitutes a
generative model, which – if well furnished – can provide
explanatory relationships between features of the basis and
agent models. Separating discussion about these levels facil-
itates comparison of different technological approaches and
projects, since the agent model can remain the same even
with very different basis and generative models.

This framework was developed to enable theorizing about
intentional behavior without requiring a commitment to men-
tal representation [11]. We use it here to enable comparative
discussions of robotics research, but do not insist on the same
commitment to the emergent behavior having a particular
relationship to intentionality on the part of the agent. This
allows us to use the same framework to study both behaviors
that are closely tied to the physical features of the agent
and environment, and behaviors that are abstracted away
from implementation. In this way, we can build “stacks”
of relationships between the basis model and the emergent
behavior, producing more sophisticated task performance
with generative explanations of how more basic features
contribute to overall agent-system performance.

B. Composing controllers with different bases to generate
complex behavior

With this conceptual framework in place, recall the exam-
ple of a robot collaborating with human scientists to perform
fieldwork in the desert [5]. Under autonomous operation,
the robot must detect and avoid obstacles and achieve goal
states. The bulk of even end-to-end learners [14], [15],
which control autonomous robots by relating pixel data from
cameras or other sensors and directly to motor torques on the
output side, do not include aspects of the motor controllers
themselves, which are crucial for the overall emergent be-
havior. Even for a roboticist who is completely committed
to training a single controller for the whole system, it is
therefore natural to make a division at some level between the
controller a researcher is currently developing and a lower-
level controller that elicits the torques requested from the
motors. Additionally, for any physically instantiated robot,
the passive mechanics of the robot-environment system will
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Fig. 1. We describe the role Gibsonian affordances have played in designing controllers at three levels (Section II-B). In this example task, a robot and
human collaborate to perform fieldwork experiments in the desert.

also contribute to the system’s overall behavior, and so a
generative model of how passive mechanics and active motor
control contribute to overall behavior is needed.

The importance of distingishing basis and emergent mod-
els, with a generative model relating them, becomes even
more important once we consider projects that compose
multiple controllers in order to control the behavior of a
robot-environment system from the bottom up in this manner.
For example, a composition of controllers on a legged robot
walking in a cluttered environment towards a goal might
include controllers for the motors, controllers for individual
leg positions and velocities, controllers to coordinate which
legs act together or separately, controllers for the robot’s
overall direction and speed, a reactive controller for obstacle
avoidance, and a global controller that informs the robot of
its goal based on input from a collaborating human or other
robot – or even additional global information (Figure 1). This
composition of multiple controllers generates the agent-level
behavior of the legged robot navigating its environment from
the basis model of the various controllers and their coor-
dinated interaction, and so plausibly a robot that responds
to the distal, spatiotemporally larger, affordances in its en-
vironment. The need for a description of the emergent level
distinct from the level of control and programming is crucial,
regardless of the kind of programming or control involved,
because the task is an agent-environment interaction and the
elements of control and programming might or might not be
directed at the specific level of task in question.

Iterative applications of the generative methodology can
relate iteratively more basic processes to iteratively more
emergent behaviors. Different levels of generative expla-
nation may involve different concerns – as the relevant
behaviors, and so agential or environmental features, vary –
and so theoretical tools, as needed. Still, at a high degree of
abstraction we can view all of their contributions as providing
generative explanations. We can thus talk of concern-specific
controllers with bases at different levels of abstraction from
the physical implementation, which generative explanations
can recruit. This approach allows us to start with rela-
tively simply composed systems, and use a wide variety of
tools and approaches at our disposal depending on specific
problem needs at each level to build up more complex

compositions of agent-environment behaviors.
Here, we examine projects with three kinds of concern-

specific control – “mechanics,” “coordination,” and “naviga-
tion” – that serve as exemplars for our approach. These three
are intuitively distinct enough to illustrate the usefulness of
our approach for a variety of projects.

1) Mechanics: Within the “mechanics” level we describe
both passive dynamics, i.e., the deterministic behavior of
a system based only on physics,1 and active dynamics,
i.e., the behavior when when the robot is programmed to
emulate another physical system. Consider a robot storing
and releasing energy in springs in its legs while it runs [17],
[18], [19]. The contributions by the springs to the motion of
the legs come from the passive dynamics of the system.

Active dynamics are just like passive dynamics from
the point of view of an observer looking at the physical
behavior of the system, but active dynamics are generated
by electromechanical components. An observer with no
information about the source of the forces produced at the
end effector will not be able to distinguish the behavior of
this system from a system with a physical spring in place of
the electromechanical components.

2) Coordination: Most intuitively, the “coordination”
level describes the coordination between limbs or other end
effectors that produce whole-robot behaviors like taking a
single stride [20], turning while running, or performing a
transitional maneuver like a jump [21], [22]. We also include
the coordination of multiple controllers for a single leg in
this mode. For example, in a hopping or running robot,
parallel composition of a pitch controller with a vertical
height controller results in a robot that can run quite robustly,
with speed and height control [23], [24].

3) Navigation: Controllers designed for the “navigation”
level abstract away from the mechanics of the body and
the coordination of its end effectors. Here, we examine
navigation tasks in which the robot must avoid obstacles
and make progress towards a goal state. The “navigation”
level of control, when considered alone, presumes robust
coordination and mechanics basis levels such that it is
sufficient to consider only the robot’s current direction and
speed, and maximum speed and turning capabilities.

1This has been more carefully articulated as “preflexes” – see e.g. [16]



III. CASE STUDIES

We summarize several research projects that demonstrate
the usefulness of our empirically driven, generative Gib-
sonian approach. We discuss the variously related control
loops introduced in the previous section to provide generative
explanations of emergent behavior at the various levels of
agent organization. For each project, we explain (1) the
aspect of behavior under study (the “emergent level” de-
scription), (2) the relevant details of the specific robot and
environment in the project (the “basis level” description), (3)
the explanatory means by which the robot is able to perform
this behavior competently in its environment in virtue of
basis level features (“generative relationship”), and (4) we
review the affordances considered in the design process.
Finally, we discuss a project that combines Gibsonian-
inspired control at some levels with symbolic processing
at the most abstract level of control to demonstrate that a
dogmatic commitment is not required to see benefit from
using Gibsonian affordances in robot design.

A. Mechanics: Energetic cost of running on sand

This project is part of ongoing work to increase the ca-
pabilities of robots working alongside geoscientists studying
erosion in environments like deserts [5].

1) Emergent behavior under study: The authors reduce
the energetic cost of transport for a robot locomoting in the
desert without sacrificing speed. Sand is highly dissipative,
with a reaction force approximately linear in depth and
quadratic in velocity, and no restoring forces [25].

2) Basis-level robot-environment pair: Minitaur [26] is a
quadrupedal direct-drive robot that can be programmed for
locomotion using parallel compositions of PD controllers that
emulate damped springs [23]. Vertical hopping control for a
single leg is thus decoupled from pitch control or coordina-
tion between legs. Deriving from Raibert’s pioneering initial
designs [24], a typical vertical hopping controller has a soft
compliance gain during the first half of stance, allowing the
leg “spring” to deflect under the weight of the body, and a
stiff compliance gain during the second half of stance that
causes the leg to extend and push the body up. When this
type of controller is used on a compliant substrate like sand,
the sudden injection of energy into the leg spring causes
the foot to penetrate deeper into the sand at high velocity
before the body moves up [27]. The authors target the vertical
hopping controller and model its interaction with a bulk-
behavior granular media model [25].

3) Generative relationship: Because the dissipation func-
tion of the sand is quadratic, most of the energy that a
robot transfers to the ground through forces exerted at its
foot will be quickly lost. The authors significantly reduce
the energetic cost of a single jump to a given height [28],
[27] by adding a virtual damping force in proportion to the
velocity of intrusion of the foot into the granular media. The
virtual damper is only active during the second half of stance,
when the robot’s leg spring switches from soft compliance
gain to stiff. By punishing high-speed intrusions, this virtual
damping force prevents the foot from entering the dangerous

high-velocity regimes in which large amounts of energy are
quickly transferred to the ground, significantly reducing the
energetic cost of a single step without reducing apex height.

4) Use of Gibsonian affordances: The robot does not
model the ground in any control loop running at the time of
execution. Rather, at every timestep, it interrogates the state
of the agent-environment system – its body and foot position
and velocity – and reacts to this information by changing its
leg gain in the next timestep. To implement this controller
on a behaving robot, the robot need only have position
encoders on its motors to sense leg length, and a sensor to
detect the distance between the robot’s body and the ground.
To motivate the controller, the agent-environment system is
considered as one indivisible system – a vertical hopper
interacting with granular media. The quantity of interest is
the work transferred between the robot’s foot and the ground.

B. Coordination: Characterizing interactions with obstacles

Here we highlight an analytical contribution [29] to an
ongoing project [30] examining the relationships between
body, gait, and environment parameters that affect the center-
of-mass trajectory of a robot.

1) Emergent behavior under study: Obstacles can be
seen as opportunities for a locomoting robot to perturb its
trajectory towards a desired direction. It may be possible to
use perturbations from obstacles to purposefully modify a
robot’s trajectory by changing its gait parameters in order
to interact with the obstacles at advantageous points in time
during stance.

2) Basis-level robot-environment pair: HQ-RHex [29] is
a small RHex-family robot with direct-drive legs. The robot’s
body is laser-cut from ABS plastic, making it easy to quickly
change the aspect ratio of the body. The version used in these
experiments has only four legs, which are coordinated into
two gaits: bounding, in which the front two legs and rear
two legs move together, and trotting, in which both diagonal
pairs of legs move together. In both gaits, the two pairs of
legs move out of phase with each other.

The environment is an obstacle field consisting of a series
of half-round pipes placed on the ground. Each experiment
consists of the robot running over the obstacle field per-
pendicular to the cylinders, starting from a variety of initial
orientation angles.

3) Generative relationship: By systematically varying
parameters governing body shape, log spacing, and leg
coordination in both physical and simulation experiments,
the authors demonstrate that the orientation angle of a robot’s
steady-state center-of-mass trajectory over an obstacle field
can be predicted using closed-form analysis [29].

4) Use of Gibsonian affordances: This project highlights
the mutuality of the agent and its environment: The steady-
state behavior emerges from a relationship between the log
spacing, the aspect ratio of the body, and the pattern of leg
contacts with the obstacles.

As a larger goal, the authors aim to extract general rela-
tionships between parameters describing robot and environ-
mental properties, including relationships between sizes or



shapes of objects and their influences on a robot’s locomotion
like the forces and torques resulting from interaction. General
relationships between properties and forces can then be
programmed into the robot, and used in reactive control
loops. For example, the inclination angle of the initial contact
between the robot’s leg and an obstacle can be used to
predict the force exerted on the robot and thus the size of the
trajectory perturbation [30]. Based on the current trajectory,
the contact angle, and the desired direction of locomotion,
a robot might then reactively either accept or reject the
disturbance by adjusting its gait parameters.

C. Coordination: Manipulating a robot’s body with its limbs
We highlight the first installment of a research program

that uses insights from the manipulation literature to inform
limb coordination for legged robots [31], [22], [32].

1) Emergent behavior under study: The authors sought to
distribute effort between limbs while a robot is standing on
rigid, uneven terrain. Uneven distribution of effort can cause
motors to overheat, damaging the robot.

2) Basis-level robot-environment pair: XRHex [33] is a
second-generation RHex robot [34], a six-legged machine
with one rotational degree of freedom at each hip. The robot
can measure the torque exerted by each hip by monitoring the
current draw by the motor. Typically during a stand on rigid,
flat ground, the robot is supported by all six legs pointing
down, and all six legs exert the same torque. When standing
on uneven ground, holding all legs in the same position
requires much more torque from some motors than others.

3) Generative relationship: To develop the controller, the
authors consider a robot with two legs: one at the front of the
robot, and one at the back. The authors use the difference in
the current draw between the motors in the front leg and the
back leg as a proxy for the internal forces – the amount that
the robot’s legs are “fighting” each other in stance. These
internal forces cause the robot to exert more torque than
necessary in order to stand. At each timestep, the controller
follows the negative gradient of this difference, minimizing
the internal forces. In experiments on the physical robot, the
controller is applied to each of the six legs independently.

There is an additional term in the controller which drives
the average torque down, centering the mass of the robot over
its toes. This reduces the overall force required to stand.

4) Use of Gibsonian affordances: This controller acts on
an interaction between the robot and its environment and
uses an aspect of this interaction as the controlled variable:
the torque (current draw) at the hip joint. The indivisibility of
the robot-environment system is thus respected. The relevant
property is directly measured by monitoring the difference
in current draw at the hips. The contributed controller is
reactive, and the robot does not make use of an internal
model of the environment to choose its foot placement.

D. Navigation: Reactive control on a global scale
This project demonstrates the use of a reactive controller

for navigation in an unstructured, outdoor setting that violates
the assumptions under which the controller is mathematically
proven to succeed [35].

1) Emergent behavior under study: The authors develop
a controller that governs navigation towards a goal in an
environment with disc-shaped obstacles.

2) Basis-level robot-environment pair: RHex, introduced
in Section III-C, is a robot with six C-shaped legs that are
actuated by one rotational degree of freedom at the hip.
The robot is tasked with navigating to the top of a hill
in a natural forested environment. The shape of the robot’s
legs allows it to step through complex, unstable or broken
surfaces including surmounting obstacles at or below the
length scale of hip height [36]. This allows the robot to
ignore leaf litter, small branches, and other debris for the
purposes of its navigation task. The robot is equipped with an
inertial measurement unit (IMU) with which to measure the
local gradient, and a laser range finder with which to detect
obstacles that are large enough to be likely insurmountable.

3) Generative relationship: The authors develop a re-
active “navigation level” controller that takes information
about the local gradient from the IMU and information about
obstacles from the laser range finder at each timestep. The
controller produces a summed vector indicating the direction
that will increase the robot’s height (reducing distance to the
goal state) while avoiding the local obstacle.

Rather than commanding the robot’s motors directly from
this point, the controller issues commands constrained by a
horizontal unicycle model of the robot. The commands are
thus bounded by reasonable expectations of the translational
and rotational velocities that the robot can physically exe-
cute. The authors provide formal guarantees for conditions
under which the robot will achieve its goal, and perform
experiments on a physical robot on forested hillslopes. Dur-
ing physical experiments, the authors logged thousands of
bodylengths of successful autonomous climbing, including
settings that violate the assumptions under which the guar-
antees are valid.

4) Use of Gibsonian affordances: The perception of both
the direction towards the goal state (gradient) and the ob-
stacles is direct, and the robot reacts to local information
without developing a detailed model of the environment. The
only aspects of an interal model of the environment that the
robot uses are (1) an assumption that obstacles are disks,
and (2) a short-term memory that prevents the robot from
re-encountering a nearby obstacle that strays in and out of
its field of view.

E. Navigation: Reactive controllers in abstract spaces

This project is part of ongoing work that applies reactive
control to robots navigating in abstract spaces [37]. The
abstract spaces are constructed using the assumption that the
robot is encountering obstacles it can recognize.

1) Emergent behavior under study: As in the previous
case study, the authors develop a controller that governs
navigation towards a goal in an environment with obstacles.
In this case, the obstacles are non-convex but familiar:
The robot has a catalogue of objects that it can recognize,
including pose, as soon as they are within sensor range.



2) Basis-level robot-environment pair: The controller is
developed and tested in simulation, with a particle robot
interacting with an unknown environment with nonconvex
obstacles. Particle robot simulations are performed with two
actuation methods: full actuation, and differential drive.

3) Generative relationship: The contribution of this
project seems at first to be obviously non-Gibsonian, but
it in fact demonstrates a method of interfacing between a
deliberative planner and a reactive planner that allows the
roboticist to gain some benefit from both approaches. The
authors assume that non-convex obstacles can be recognized,
and their pose estimated, once in range of a distance sensor.
Once observed and recognized, the non-convex obstacles are
contracted to a round shape using a continuous, invertible
deformation. As they are detected, the contracted obstacles
are added to a “model” space, which contains only round
obstacles. The robot can then use a reactive controller to
navigate through this model space. Commands to actuate the
robot are obtained by first pulling the reactive controller’s
commands back from the deformed space into a physi-
cally relevant space containing all of the mapped obstacles
(“mapped” space), and then through a controller to actuate
either a fully actuated or a differential drive robot.

4) Use of Gibsonian affordances: This controller con-
tracts recognized objects to small, round obstacles that can be
reactively navigated around in an abstracted space. Making
use of a library of recognized symbols in this way separates
the problems of symbol grounding and navigation, reducing
the complexity of the recognition task and increasing the
robustness of the navigation controller by providing formal
guarantees about its performance. The perception of the
abstracted obstacles is direct.

F. Navigation: Layering deliberative and reactive controllers

This project is part of ongoing work that makes use of
both reactive and deliberative controllers in order to gain
some benefit from both approaches [38], [39].

1) Emergent behavior under study: This project is an
example of an assembly task [40]: The robot must rearrange
multiple objects in its environment to a desired configuration
while encountering previously unknown obstacles.

2) Basis-level robot-environment pair: Theoretical work
[39] was done on a simulated differential-drive robot. Phys-
ical experiments [38] were performed with a Minitaur re-
arranging wheeled stools in an unknown environment with
obstacles.

3) Generative relationship: The robot is tasked with
moving multiple objects to multiple goals. The task must
therefore first be broken down into subtasks. A deliberative
planner performs this function. To execute the subtasks,
commands are passed to a separate reactive controller.

4) Use of Gibsonian affordances: The deliberative plan-
ning portion of this controller is not Gibsonian. However,
the use of a reactive layer to handle obstacle interactions
significantly simplifies the control problem, and allows the
authors to provide formal guarantees about the conditions
under which this controller should be expected to succeed.

This is in line with our empirical, rather than dogmatic,
Gibsonian approach. If non-Gibsonian deliberative planning
is the most effective way to solve a problem (at least at this
stage) we do not reject such strategies on principle. In this
way, we can show how a deliberative approach can benefit
from incorporating elements of our Gibsonian approach.

IV. CONCLUSION

We have provided examples of robotics research incorpo-
rating strategies that take avail of Gibsonian affordances at
multiple levels of control, from mechanistic force laws to
controllers for navigation in unknown environments. In all
of these examples, a controller perceives information in the
robot-environment system and reacts to it directly. This is
even true in the reactive controller that handles nonconvex
obstacles outlined in Section III-E, if the “agent-environment
system” is permitted to exist in an abstracted space.

Using reactive controllers allows robotics researchers to
apply tools from dynamical systems theory, making possible
formal guarantees for the situations in which a robot can be
expected to succeed – or fail – at a task. By using reactive
control rather than planning with a presumably accurate
world model, robots are able to recover from perturbations,
either from unmodeled external forces or sensor problems, so
long as the robot’s perturbed state is still within the domain
in which the controller guarantees success. Even partial
incorporation of Gibsonian behavioral programming confers
some benefit for robustness and explainability (Section III-
F).

Through these examples, we have illustrated how a Gibso-
nian approach to robotics research can be both theoretically
illuminating and practically useful. We demonstrate how
rational, empirical practice can apply Gibson’s philosophy of
affordances by using the generative methodology [10], which
requires explicit articulation of the conditions for success of a
perceptually direct strategy. Dogmatic “Gibsonianism” is not
required to benefit from these applications. Considerations of
engineering design and the practicability of abstraction from
the environment at different levels of control can instead
determine the mix of endowed prior knowledge, represen-
tation building, and sensory dependence. A commitment
instead to a generative interpretation of affordances may
facilitate reasoning about how to design complex behaviors
from simpler reactive constituents. Robustness could then be
guaranteed by the formal properties of specific compositions.
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