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Abstract— This paper develops and evaluates a geometry-
driven approach that allows for the detection of affordances
in an scalable and multiple-instance manner. True to Gibson’s
idea of direct and economical perception, our approach requires
little supervision, is straightforward to compute and is agnostic
to semantics. The proposed approach is trained with a single
interaction example on synthetic data (i.e. simulated), yet is
able to generalise to previously unknown RGB-D scenarios
without further training. Furthermore, our use of geometric
information not only allows to detect what a location in the
environment affords but also how it affords, i.e. object-pose. We
show results from several dozens of affordances (80+) predicted
simultaneously at high frame rates on indoor environments such
as kitchens and offices. Our evaluations show high rates of
precision and that the algorithm’s predictions align well with
crowd-sourced human validations.

I. INTRODUCTION

Cognitive robots that need to understand and interact with

their surroundings can greatly benefit from perceiving and

learning based on environment’s functional properties or

affordances. The concept of affordance was coined by James

J. Gibson [1] more than five decades ago in the field of

ecological psychology. For Gibson, affordances are action

opportunities in the environment that are directly perceived

by the observer. According to this, the goal of vision was to

recognise the affordances rather than elements or objects in

the scene. However, perhaps motivated by the top-down view

adopted in computer vision research, much of the attention

given to the problem of affordances has focused on the

recovery of complex representations of the world, internal

symbolic relationships or semantic information, which un-

dermines the idea of direct and economical perception of

affordances proposed by Gibson.

The problems of visually recovering the “valid” properties

of the environment that allow to detect affordances are

further accentuated in robotics, this is due to the fact that

robots need to be able to work in environments that are

cluttered, unstructured and unknown. Developing a system

that is able to work under these conditions is a difficult

problem; more so when traditional affordance detection

approaches often need to recognise objects semantically in

the environment, or to have previously extensively trained for

as many cases (examples) as possible in order to generalise

to novel scenarios. Robots would benefit from affordance

detection approaches that do not rely on object recognition,

nor environment’s features costly to estimate; dropping or re-

laxing such requirements in the perception system can allow
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Fig. 1. We propose an algorithm that leverages single-interaction examples
to devise a multiple-affordance representation. This unified and compact rep-
resentation along with the proposed algorithm allow for real-time prediction
of multiple affordances simultaneously. The proposed work enables a robot
to explore a novel scenario and answer the perceptual question of ”What

can I do here?” or ”What can I afford to do here?”.

robots to have greater generalisation capabilities, enabling

them to accomplish their task efficiently.

In previous work [2], we introduced a novel affordance

descriptor that is able to richly characterise the relations

between pairs of objects: The Interaction Tensor. In this

paper, we expand the capabilities of the approach by first

demonstrating the power of the representation to characterise

generic pairs of objects. Then, we show that the approach

allows to predict several dozens (80+) of interactions at high

rates. More importantly, we demonstrate that the approach is

able to predict multiple affordances in previously unknown

RGB-D environments by training from a single example.

Examples of the affordances detected with our method are

shown in Fig. 1 and 6.

The paper is organised as follows. Section II describes

most common approaches studied to date in affordance

detection. Section III describes the core of our approach for

scalability before we present the evaluation and results of

our algorithm in Section IV. Finally, Section V presents our

conclusions and avenues for future work.

II. RELATED WORK

Affordance detection has been studied in recent years in

the computer vision and robotics fields. Generally speaking,

affordance knowledge has been incorporated in learning

systems that use data from demonstrations of interactions,

robot self-exploration as well as systems that learn from

labelled data. In terms of applications, the approaches have

considered semantic scene understanding, grasp learning,



gesture recognition, object segmentation and planning in

goal-directed tasks.

A big body of research in affordances for robots comes

from the developmental robotics field [3], [4], [5]. Gen-

erally speaking, the focus of approaches in this field is

on the representation and learning of robot’s actions and

their consequences in the environment. The core of this

approaches studies the problem of affordance learning as a

problem of structure learning, representing affordances as

the (probabilistic) relations between actions, objects, and

effects. These models have enabled robots to learn two-object

relational affordances [6], higher-level manipulation actions

[7], and two-arm manipulation [8]. More recently, relational

affordances have been studied for learning tool usage [9],

[10], [11], [12], [13], where the general idea is to learn

the effect that one object (i.e. tool) has over or relative to

another, allowing to plan and achieve a target effect or object

configuration.

Another big body of research has been dedicated to the

study of grasping affordances, which is an important skill for

robots in order to interact with objects in the environment.

Recent examples of this type of work are [14], where a

robot learns semantic (constrained) grasps from humans

demonstrations, [15], [16] who generate grasp hypotheses

based on the detection and fitting of geometric priors; or

grasp affordance proposals in a Pick and Place scenarios

[17].

Learning what the environment affords to others (e.g.

humans) has also been studied in robotics. For instance,

methods to anticipate humans activities and assist in ev-

eryday tasks [18] or approaches that allow robots to show

human-like behaviours [19]. Human affordances have also

been actively investigated in the computer vision community;

for instance, hallucinating humans in indoor environments

[20], [21], [22], [23] or learning from labelled data [24].

Overall, these approaches aim to learn suitable locations for

humans to sit, stand, walk, etc.

One more area where important work has been carried

out is learning single-object and object-part (or tool-part)

affordances from labelled examples. [25], [26], [27], [28]

characterise single-object affordances such as containment

or sittable using CAD models. In approaches such as [29],

[30], [31], affordances of parts of objects are studied; for

instance, to learn parts of an object that afford cutting and

look for potential replacement tools. More recently, deep-

learning methods have been exploited for the problem of

object affordances [32], [33], [34]; these approaches leverage

the ability of deep Convolutional Neural Networks (CNNs)

to learn features from large collections of annotated data.

Notably, recent approaches for affordance detection are

heavy in terms of requiring multiple learning examples or

extensive training phases. Despite the success of human-

inspired learning stages, approaches are often limited to a

small set of objects and affordances. It is not clear how

the models would apply for novel objects or novel realistic

environments. Methods that have concentrated efforts in a

single type of interaction (i.e. grasping or human affor-

dances) have achieved remarkable results when facing novel

realistic scenarios, yet the question remains open about the

generalisation of the approaches for other types of interaction

or scenarios that do not require manipulation.

Remarkably, geometric information has proven to be a

strong cue for affordance detection in the previous ap-

proaches. The advantage of geometric features over alter-

native representations, such as texture or colour, is that

geometry provides a stronger generalisation power since the

geometry of everyday objects strongly dictates the physical

interactions afforded by objects in the world. In contrast

to works such as [35], [36], our method does not build

on higher-level geometric primitives nor complex features

computed on the environment. Moreover, the general purpose

nature of our representation allows to characterise affor-

dances for simple objects such as a mug but also enables

the representation of more complex interactions like a human

riding a motorcycle. Contrary to methods in computer graph-

ics studying functionally analysis [37], [38], the approach

introduced in this paper takes into account visually perceived

information, does not require highly detailed geometries and

is straightforward to compute.

III. SCALABLE AFFORDANCE DETECTION

Our approach expands on [2], where an algorithm to

detect geometric affordance locations in indoor scenes is

presented. We propose an algorithm to enable scalable

multiple-affordance detection. The approach that we pro-

posed allows us to increase the number of affordance-object

pairs queried simultaneously at test time without heavily

compromising detection rates. Briefly speaking, the approach

that we present agglomerates multiple affordance descriptors

and performs a grid-based clustering to select a reduced

number of keypoints (centroids) required to make predictions

at test-time. This is aimed for parallelisation and efficient

evaluation. Using this algorithm a robot could answer ques-

tions such as “What can be afforded here?” on multiple point

locations of an input scene.

In the following subsections we provide details of the pro-

posed algorithm by first briefly summarising our previously

introduced affordance representation: the Interaction Tensor.

A. The Interaction Tensor

The Interaction Tensor (iT) [2] is a tensor field represen-

tation that characterises affordances between two entities.

Using direct, sparse sampling over the iT allows for the deter-

mination of geometrically similar interactions from a single

training example; this sampling comprises what is called

affordance keypoints, which serve to more quickly judge the

likelihood of an affordance at a test point in a scene. The iT

is straightforward to compute and tolerates well changes in

geometry that provide good generalisation to unseen scenes

from a single example. The iT example of any affordance is

created with 3D or CAD models of the interacting objects,

these objects are placed relative to each other simulating the

interaction that they would have on real circumstances. Then,

using a dense pointcloud representation of the object the
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Fig. 2. Computation of an interaction tensor from an affordance of interest. a) Objects are placed simulating the intended interaction in pointcloud
representation. b) Voronoi diagram over the whole pointcloud (i.e. both objects). c) Interaction Bisector Surface formed by ridges shared between different
objects. d) Affordance keypoints and their associated provenance vectors. e) 3D full interaction tensor for Filling a mug.

Interaction Bisector Surface (IBS) is computed; this surface

is approximated by computing the Voronoi diagram for the

complete pointcloud (i.e. both objects) and retaining only the

ridges shared by points from different objects. Information

regarding the regions that contributed to the computation of a

point on the IBS is preserved in what is called provenance

vectors. This process generates the iT for the affordance

simulated by the two objects. Fig. 2 illustrates the process

to obtain an iT for the interaction between a pair of objects.

We name the objects involved in every interaction as

query-object and scene-object (or scene), respectively. A

query-object is an object with a known affordance and a

scene-object is the object (or part) completing the interaction.

For instance, in the interaction shown in Fig. 2 (i.e. Filling a

mug), the mug represents the query-object and the tap acts a

scene-object. The iT is a weighted vector field (provenance

vectors), where the weight assigned to any location follows

the intuition that areas where the objects come closer together

are more relevant for the interaction. More precisely, weights

are computed as follows

wi = 1−
|~pi|

|~pmax|
(1)

Eq. 1 assigns higher weights to locations of the interaction

where the objects come closer together or touch, these

locations have their associated provenance vectors ~pi with

a small magnitude. The opposite happens to the weights

of locations with larger provenance vectors. Examples of

weighted iTs can be seen Fig. 3, notice the high-weight

(red) assigned to the region corresponding to the hook of

the coat-hanger. Fig. 3 shows examples of the iT descriptors

for two affordances with different objects; this exemplifies

the robustness of the iT to changes in the geometry of the

interacting objects.

The descriptor for any given affordance is comprised

by sampling N affordance keypoints from the iT example

(N = 512 in our experiments). The sampled affordance

keypoints represent one orientation of the query-object (the

same from the training example); we generate a new descrip-

tor by rotating the affordance keypoints around the gravity

vector ~z, which allows us to detect affordance candidate

locations at multiple orientations (8 orientations in [0, 2π)
evenly distributed for our experiments). Thus, the affordance

descriptor for a target interaction is comprised by 4096

keypoints, where each keypoint is a 6-dimensional feature

vector (3 components for xyz coordinates of the IBS point
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Fig. 3. iT examples for a subset of the objects in our study. Top row shows
iT examples for Filling objects with different geometries. Bottom row shows
iT examples for Hanging the same object (coat-hanger) on different scenes
(i.e. scene-object).

and 3 for the provenance vector components). As shall be

shown later, there is no processing impact given our scalable

approach.

B. iT Agglomeration

The algorithm that we propose for scalable and multiple-

affordance detection follows a one-shot learning approach,

i.e. it uses a single example from every affordance to devise

the multiple-affordance descriptor. With such representation

and algorithm, one can give answer to questions such as

“What can I affford to do here?” on multiple point locations

of an input scene without the need to individually test

affordances. The approach allows to increase the number of

affordance-object pairs queried simultaneously at test time

without heavily compromising detection rates.

For this work, a total of 84 affordance-object pairs are

considered, they include CAD models1 of multiple household

items from a wide range of geometries and dimensions,

and its inspired by standard robotic manipulation datasets

such as [39]. Human models for Riding and Sitting are also

included in order to test ”human” affordances. The specific

affordance-object pairs are shown along the x-axis in Fig.

9. Note that some objects afford more than one thing e.g.

Fill-Pitcher and Hang-Pitcher. It should also be noted that

only objects with bounding box diagonal larger than 10cm

long were considered for this experiments; this decision was

1https://3dwarehouse.sketchup.com



Fig. 4. Agglomeration of affordance descriptors and grid-based clustering of an example agglomeration of 3 affordances. a) single-affordance keypoints
are agglomerated (affordances shown as different colours), b) uniform-size cell grid is fitted to the pointcloud, c) one cell can potentially contain many
keypoints from multiple affordances, only closest keypoint (per-affordance) to the cell centroid (green) is taken into account during the update process, d)
an updated cell with the provenance vectors associated to the keypoints kept after clustering.

taken in the knowledge that standard RGB-D sensors would

fail to recover pointclouds for such dimensions; for instance,

a screw, a washer or a coin.

For every interaction we compute an iT, i.e. 84 descriptors

in total. Once all the descriptors are computed, we agglom-

erate them in a single pointcloud on which we perform

clustering with the algorithm shown in Algorithm 1. First,

we fit a grid of uniform-size cells covering every single

affordance keypoint. Then, we use as seed-points only the

centroid of non-empty cells. For every one of these cells, we

only keep the one keypoint that is closest to the centroid in a

per-affordance basis. For instance, one cell could contain 100

keypoints, all coming from the descriptor of Placing a bowl;

after the iT clustering process is carried out this cell will only

contain the keypoint closest to the cell’s centroid. Finally,

the descriptor Xagglomerative (Xa for short) is obtained by

updating the centroids using the keypoints within each cell,

and keeping track of the provenance vectors associated with

them. Fig. 4 illustrates the cell update process of the iT

clustering algorithm (steps 6-10 of Algorithm 1).

Algorithm 1 iT clustering

Input: Affordance keypoints X = {x1, ..., xk}, cell size e

Output: Cluster centroids C = {c1, ..., cj}
1: Initialize C with centroids evenly distributed in

[xmin, xmax] with increments e.

2: for all x in X do

3: Assign x to cluster argminj‖x− Cj‖2

4: Remove empty clusters

5: Initialize update sets Y1, ..., Yj to empty

6: for all Clusters C do

7: for all Affordances A = {a1, ..., ak}6= present in Cj

do

8: Recover all x from affordance ak
9: Assign argminn‖xn − Cj‖2 to Yj

10: Update centroids: cj ←
1

|Yj |

∑

y∈Yj
y

C. One-shot Prediction

The clustering process leads to a reduced number of 3D

points (centroids) that represent a large number of affordance

keypoints. This reduced set and their associated provenance

vectors are used to compute and predict affordance candidate

locations at test time. As discussed earlier, we aim for a

method that allows a robot answering the question of ”What

can I do here?” in any given location of an input scene. In

order to answer that for up to 84 affordances, we carry out

the following procedure:

1) Uniformly randomly sample a test-point ti in the

input scene. Uniform random ensures that the algo-

rithm takes into account locations across the whole

input scene. Keep in mind that our approach is agnostic

to pre-assumed features in the scene affording an inter-

action. Thus, it is until the interaction is carried out (by

hallucinating) that the affordability of the interaction is

discovered.

2) Apply the transformation Tti in order to align the ag-

glomerative descriptor Xa relative to the test-point

in the scene. Since our descriptor already takes into

account multiple orientations for any given affordance,

the transformation is a straightforward translation. In

homogeneous coordinates

X ′
a = TtiXa (2)

3) Compute the 1-NN in the scene for every keypoint

in the agglomerative descriptor X ′
a using the voxel

surrounding test-point ti. The dimension of the voxel

is proportional to the size of X ′
a (diagonal of bounding

box). Focusing the NN-search in this voxel alleviates

expensive computations associated with this step.

4) Estimate test-vectors and compare against provenance

vectors to produce a score. Test-vectors are the

approximation of the provenance vectors when com-

puted on a novel scenario, a test-vector goes from a

keypoint in the descriptor to its nearest neighbour in

the vicinity (voxel) of the current test-point. The score

is a straightforward vector comparison computed via

Eq. 3.

sk =
1

Nk

Nk

∑

i=1

1
√

2π(wk
i )

2
e
−

(∆k
i
)2

2(wk
i
)2 , (3)

with

∆k
i =
‖~vtj − ~pki ‖

‖~pki ‖
, k ∈ [0, 84]

where wk
i is the weight of i-th keypoint of affordance

k and it is computed from training (Eq. 1). ∆k
i is the
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Fig. 5. Illustration of affordance prediction at test-time. a) A test-point is sampled from the input scene (red), b) The agglomerative representation (green)
is aligned relative to this test-point, c) The 1-NN in the scene (yellow) for every centroid in the agglomeration, d) An example test-vector (blue) from a
cell centroid to its closest scene point, e) A test-vector is compared against the stored provenance vectors p

k

i
associated with affordance keypoints in that

cell. In this particular cell, 3 scores are obtained.

difference between test vector ~vtj (estimated using the j-

th cell-centroid) and provenance vector pki . Fig. 5 illustrates

the process followed at test-time in order to predict affor-

dance candidate locations. The intuition behind the scoring

function is fitting a Gaussian window to every keypoint in

the descriptor. The width of this window is regulated by the

keypoint’s weight wk
i ; thus, smaller differences between the

expected (provenance) vector and the test vector translate

into a higher score (per point). Notice that, given that

the agglomerated affordance keypoints represent multiple

orientations, the prediction algorithm produces a score for

multiple oriented interactions. Therefore, we not only are

able to determine if a point in the scene affords or not but

also how it affords, i.e. the orientation of the query-object

that in conjunction with the scene enables the interaction.

IV. EXPERIMENTS AND EVALUATION

For our experiments, we perform affordance predictions

in synthetic scenes and real indoor scenarios. Our one-shot

affordance prediction experiments include results of over

150 RGB-D scenes (randomly selected) from ScanNet [40],

which include kitchens, living-rooms and offices. Briefly

speaking, the experiments consist in executing the steps 1-

4 in Section III-C for an input scene. For evaluations, we

investigate the effect of the parameters used by our method

(e.g. cluster size) in terms of prediction rates and human

validations. Fig. 6 shows affordance prediction examples

produced with out method for various indoor scenes. These

figures are generated offline, checking for collisions among

query-objects. The problem of deciding on-line (i.e. at test

time) ”what happens where? “, or which affordance should

take place at a particular location (out of all the possibilities)

is regarded as non-trivial and has not been addressed for now.

A. Cluster size and detection rates

One important parameter of our approach for multiple-

affordance prediction is the cell size employed to cluster

affordance keypoints. This is somewhat a compromise of

parallelisation capability and framerate operation. One first

consideration of this work explored non-uniform spatial rep-

resentations of the keypoint agglomeration, representations

such as those in e.g. Octrees. However, the diversity in

Fig. 6. Multiple-affordance detection examples for RGB-D indoor scenar-
ios. In green are shown query-objects with their predicted poses

dimension and sparsity of the affordances considered in this

research made very challenging the selection for the right

positioning of centroids, which did not perform as well as

sparse yet uniform-sized cells.

Fig. 7 shows the dimensionality of the multiple-affordance

representation and the average prediction rates according to

the cell size.
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Fig. 7. Bar plot shows the dimensionality reduction achieved with the
agglomerative method for different cell sizes. The number of keypoints
required to make predictions is reduced up to 6 times. Numbers above each
bar show prediction time (milliseconds) per test-point of the input scene.

Looking at this figure, it stands out the large reduction

that is achieved with the proposed approach, which is nearly

six times smaller (344K vs 60K keypoints). The prediction

rates on the same figure show that using grids with a cell



size of 1 cm3 allows the detection of up to 84 affordances

at 10 different locations per iteration on the input scene.

This is significantly faster (6x improvement) than predicting

affordances by trying descriptors individually at test time

one after the other. As noted before, the prediction algorithm

performs a NN-search in order to estimate test-vectors and

compare them against provenance vectors, the complexity

of such operation depends heavily on the dimension of the

multiple-affordance representation (i.e. the number of cen-

troids/keypoints). More points in the representation require

more computations; thus, reducing the representation allows

for faster evaluations at test-time. As shall be shown later,

our approach is able to produce top-quality predictions even

with such a reduction in dimensionality the approach.

In an effort to further emphasise the scalability of the iT

agglomeration method, Fig. 8 shows the computation times

observed during affordance predictions of 84 affordance-

object pairs. The green curve in this figure corresponds to

the computation time measured by progressively augmenting

the number of affordances represented by an agglomerative

descriptor of 0.5cm3 cells. That is, the time shown in the

far right corresponds to an agglomeration of 84 affordances,

whereas the first value on the left corresponds to a descriptor

computed by agglomerating keypoints of 1 affordance (Sit-

ting-human). Observe that the time grows sub-linearly on

the number of keypoints added to the agglomeration. This

figure also shows the time required to predict affordances

by testing individually one after the other, which requires

approximately 644 ms per test-point in the input scene.
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Fig. 8. Plot shows the average time needed to predict multiple affordances
in any given scene location. In green is shown the time for agglomerartive
representations of various numbers of affordances (1 to 84). In blue is shown
the time required to predict affordances by testing one after the other (1 to
84). Notice that green grows sub-linearly with respect to the number of
affordances added to the agglomeration.

B. iT Agglomeration vs Single affordance prediction

In our previous work, we demonstrated the outstanding

performance of the iT method for detecting affordance

candidate locations on an individual basis (i.e. querying one

affordance at the time). We used this evidence to asses

the performance of our multiple-affordance approach. In

this sense, the predictions made with the agglomerative

representation were compared against those produced in a

single-affordance scenario (i.e. as in [2]). This is done with

the intuition that achieving a good performance with this

baseline would translate into predictions of similar quality,

i.e. meaningful affordance predictions according to human

criteria.

First, we run the prediction algorithm for every interaction

in our study, i.e. 84 sets of affordance predictions; these

results are then treated as ”ground-truth” in order to compute

performance metrics for our multiple-affordance approach.

Fig. 9 presents the performance achieved for all inter-

actions under investigation. In this figure can be seen that

1cm-cells perform better for Sitting and Placing of medium-

to-big objects, the exceptions being Placing pc-case. All

cell sizes seemed to struggle with Placing coat-hanger, fork,

tv-remote and pc-mouse. Another interesting result is that

Placing smaller objects such as a knife, scissors, plate, spoon

and pencil are predicted more reliably with the smallest cell

size. This is explained by the fact that iTs of smaller objects

are comprised of shorter provenance vectors; these vectors

are not well represented when the cell size is increased (e.g.

resolution loss). As suspected, smaller objects require a more

fine-grained representation, such as the one achieved with 0.5

cm cells.

Table I shows performance metrics for top-level or generic

affordance categories of the agglomerative approach for vari-

ous cell sizes. It can be seen that overall the method performs

best for Filling and Hanging affordances, where every single

prediction made with the agglomerative representations was

also a good location for the single-affordance baseline. It

is also worth noticing that Riding, which is regarded as

the more complex interaction in this study, has the best

performance with a cell size of 0.5 cm3. In contrast, the

predictions for Placing affordances, which are arguably the

least complex interactions, are better when a larger cell size

is employed. This can be explained by the fact that Placing

an object relies on vectors located under the objects; these

vectors are very small (i.e. millimetric) when the cell size

gets smaller. Vectors estimated at test-time rarely present

such magnitudes due to the density of the scene pointcloud.

In other words, agglomerative representations of larger cell

sizes comprise larger provenance vectors that are more easily

matched during test-time.

TABLE I

AVERAGE PERFORMANCE FOR DIFFERENT CELL SIZES.

0.5cm 0.75cm 1cm

Precision Recall F-1 score Precision Recall F-1 score Precision Recall F-1 score

Filling 94.28 49.44 0.6261 98.19 27.55 0.4224 99.74 5.6663 0.1063
Hanging 97.08 18.11 0.2792 98.69 10.17 0.1724 98.69 2.2375 0.0418
Placing 92.34 59.48 0.6853 90.48 32.44 0.4613 84.13 5.5334 0.0954
Riding 73.24 60.70 0.6646 65.00 47.26 0.5473 64.30 33.51 0.4406
Sitting 23.85 16.76 0.1968 50.00 14.95 0.2302 91.57 13.15 0.2300

Average 76.16 40.90 0.4904 80.47 26.48 0.3667 87.68 12.02 0.1828

C. Affordance Validation

Affordance predictions on their own are elusive to ground-

truth without subjective judgement or evaluation of the

likelihood of an interaction. Due to the fact that no prior as-

sumptions are made regarding objects in the scene affording

the interactions, the predictions consists of locations that an

agent would choose to accomplish an action. As an example,

one can afford to place a bowl on a chair as much as one can

sit on the kitchen’s table. These are arguably valid placings
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Fig. 9. Precision achieved with agglomerative representations produced by cell sizes of different sizes.

but need to be validated by an “agent”, in our case, a human.

We use human criteria to validate and asses the quality of

our affordance predictions.

In our work, affordance predictions are made by setting a

threshold to the output (score) of the one-shot algorithm.

First, we use Amazon Mechanical Turk to determine the

threshold that produces the best results. Here, people are

asked to evaluate the predictions made with the agglomer-

ation algorithm based on the smallest cell size. A total of

2.4K example predictions representing different scores were

shown to 42 human evaluators (turkers). These turkers had

to select a ”winner” from two possible options showing the

same affordance-object pair resulting from different scores.

A ”true” ranking based on human evaluation is computed by

fitting a Bradley-Terry model [41] to the pairwise compar-

isons, with this ranking we asses the performance of the iT

agglomeration algorithm and we find the optimal threshold

that results in the optimal detections. Fig. 10 shows the

family of classifiers induced by setting different threshold

values at the score of the iT agglomeration algorithm.

The ROC plot shows that the method achieves a good

performance according to human criteria when considering

predictions made with a score above 0.7. In other words, the

affordance predictions with a score above this threshold are

deemed as good candidates all the time.

V. CONCLUSIONS

We have developed and evaluated a scalable and real-

time approach for multiple affordance prediction on RGB-D

scenes. Based on a single training example per interaction

we are able to predict affordance candidate locations on

previously unseen scenes for over 80 object-affordance pairs

in a single iteration carried out every 106ms. Experiments

are carried out on 150 RGB-D scans of indoor environments

from a publicly available dataset. We have shown that top-

quality affordance detections can be achieved by exploiting
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Fig. 10. Mechanical turk evaluation. ROC plot shows the family of
classifiers generated by setting different thresholds bands to the prediction
score; the best result is obtained with a value of 0.7. Images on the bottom
exemplify the type of judgement humans had to make: choosing the image
that best depicts the interactions (query-objects in green).

the geometric information involved in the interaction be-

tween two entities. One interesting avenue for future work is

the investigation of grasping affordances, i.e. the interaction

between a hand and other objects. For instance, the model of

the robot’s hand would serve as a query-object that interacts

with a scene-object in the environment.
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