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Abstract—It is important to generalize robotic tasks over novel
object instances. We represent robotic tasks by end-effector
manipulation trajectories in an object-centric coordinate frame.
Given demonstrations of a particular task, we aim to learn
an object-centric coordinate frame that can be registered on
point cloud of novel object instances, such that the demonstrated
trajectories can be easily transferred. An example of task
transfer based on object-centric coordinate frame is as shown in
Figure 1, such object-centric coordinate frame helps establish the
correspondences of affordances across object instances, and we
call it Affordance Coordinate Frame (ACF). It is super expensive
to manually label ACF for supervised learning, thus we propose to
learn ACF through deep unsupervised learning. Our loss function
is defined based on the underlying assumption that objects or
object parts that afford the same task are similarly operated
through similar manipulation trajectories. At task execution time,
ACF is first registered on the novel object instance, then the
manipulation trajectory can be generated by sampling from the
probability distribution of the demonstrated trajectories, which
can be modeled by Gaussian Mixture Models.

Index Terms—affordance learning, task generalization, deep
unsupervised learning

I. INTRODUCTION

Given demonstrations of a particular task, robots should
be able to generalize it over novel object instances. In our
work, we represent tasks in the form of robot end-effector
manipulation trajectories. These trajectories are represented
in an object-centric frame such that these trajectories stay
invariant to object poses. Our key to generalize tasks to a novel
object instance is to predict the object-centric frame given
the object point cloud, then the demonstrated manipulation
trajectories can be transferred to the the novel object instance.

Figure 1 illustrates an example of object-centric frame for
a handle pulling task. As we can see, the object-centric frame
establishes the correspondences of affordances between dif-
ferent object instances, thus we call such object-centric frame
the Affordance Coordinate Frame (ACF). Our contribution
is predicting ACF given object point cloud for robotic task
generalization based on deep unsupervised learning, without
requiring expensive manual labeling of object affordances.

Our approach to automatically extracting ACF from object
point cloud is based on deep neural networks. The input
to the network is object point cloud, the output is an ACF
registered on the object point cloud. At training time, we
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Fig. 1: Example of Affordance Coordinate Frame (ACF) of a
coffee machine (upper) and a cereal dispenser (lower) for a
handle pulling task. left: object point cloud with ACF attached;
middle: full scene point cloud; right: end-effector trajectory for
pulling handle collected using Robobarista platform [5].

also provide demonstrated end-effector trajectories for each
object point cloud in the training set. The loss function is
designed such that demonstrated trajectories (each represented
in the associated ACF as predicted by the network) are similar
to each other, i.e., small distance measure. This is based on
the underlying assumption that objects (or object parts) that
afford the same task are similarly operated, leading to similar
end-effector trajectories. Note that the distance measure of
the end-effector trajectories should be robust to noise, and
we rely on dynamic time warping for a reasonable distance
measure. At test time, the robot first predicts the ACF given the
object point cloud, and then a manipulation trajectory can be
generated again based on techniques from trajectory LfD, such
as sampling from a probability distribution of the demonstrated
trajectories modeled via Gaussian Processes, Gaussian Mixture
Models, and etc.

II. RELATED WORK

Existing works on object affordance detection has made
use of deep learning for more robust detection. Kokic et
al. [2] deployed deep neural networks for object affordance
detection on partial or complete point cloud. They were able
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Fig. 2: Network architecture for predicting ACF.

to determine task dependent grasps based on the affordance
detection. Myers et al. [3] proposed two methods for affor-
dance detection on kitchen, workshop and garden tools. These
methods use geometric features of image to predict per-pixel
affordance scores. Above mentioned methods use supervised
learning methods, which require labelled data that is expensive
to acquire. We do not require manual labeling, instead we
rely on unsupervised learning for learning object affordances
towards task generalization.

Although object affordance detection works provide pixel-
wise or voxel-wise object affordance labels, such as “cut”,
“poke”, theses labels cannot be directly translated into how
a robot should perform a cutting or a poking task. Instead,
manipulation trajectories or policy can be used for robot
to perform tasks. Sung et al. [5] learned the compatibil-
ity between object point cloud, manipulation trajectory and
language, in order to select a manipulation trajectory for
robotic task execution. Similar to our work, the manipulation
trajectory is defined in an object-centric frame estaliblished
through PCA analysis on the 3D point cloud, and this severely
limits the generalizability of the manipulation trajectory across
different object instances. Dang et al. [1] transferred learned
manipulation trajectories through ICP based shape matching
technique, which is vulnerable to 3D shape variances across
object instances. Instead, our work relies on neural networks
to extract the task-relevant features of object point cloud for
establishing the object-centric frame.

Zech et al. [7] provides a survey on the computational mod-
els of affordances, they made an important observation that
affordance models at local level exhibit better generalization
ability, where object parts are being modeled for representing
affordances. Our approach is capable of registering an object-
centric frame for manipulation on 3D sub-structure of object
point cloud, thus associating object parts with affordances.

We use PointNet as proposed by Qi et al. [4] to extract 3D
features given point cloud data. PointNet has shown capability
on classification and segmentation, and object pose estima-
tion [6] of object point cloud, and the network is invariant
to the order of point clouds, can capture local interactions
between points and is invariant to coordinate transformations.

III. AFFORDANCE COORDINATE FRAME

We introduce Affordance Coordinate Frame (ACF) as a way
to transfer manipulation trajectory for robotic task generaliza-
tion. The ACF is an object-centric frame that is registered
on a given object point cloud P;, and the robotic task is
represented by end-effector trajectories 7; = {Tf}éjzl operated
on the object point cloud P;. Robot end-effector trajectory 7; is
recorded in a global reference frame in the workspace during
demonstration.

IV. DEEP UNSUPERVISED LEARNING OF AFFORDANCE
COORDINATE FRAME

We use deep neural networks for unsupervised learning of
ACF . As shown in Figure 2, the input is the object point
cloud, and the output is the predicted ACF . In order to deal
with point cloud data, we use PointNet [4] for extracting 3D
features. We output a prediction of the ACF for each point
with a score, similarly to [6]. The loss function is defined as

L= Y D(Mm, M) (1)

Ti,TjGT

where T is the set of all demonstrated trajectories for a
particular task, and M;, M; are the transformation matrix
representing the predicted ACF for input point cloud F;, P;
respectively. Note that 7;,7; are trajectories associated with
P;, P; respectively, thus M;7;, M;7; are demonstrated trajec-
tories transformed into the ACF . We use the distance function
D(-,-) between two trajectories as defined by Sung et al. [5],
which is based on dynamic time warping.
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